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Determining Angular Velocity and Angular Acceleration
of Projectiles Using Triaxial Acceleration Measurements
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Oregon State University, Corvallis, Oregon 97331

Estimation of body frame components of angular velocity and angular acceleration of a projectile undergoing
general three-dimensionalmotionusing linear acceleration measurements is considered. For the case where triaxial
components of linear acceleration are known at three noncolinear points, the kinematic equations must in general
be transformed to a computational plane before a useful solution is obtained. However, when more than three
point measurements are utilized, a solution is obtained without the need to transform the kinematic equations to
a computational plane. The sensitivity of angular rates to measurement errors is a nonlinear function of angular
rates and sensor geometry. For a body that nutates and precesses as it rolls, large errors can be induced for some
combinations of angular rates and sensor con� gurations. However, utilization of acceleration measurements at
many points on the skin of an atmospheric rocket can effectively estimate the angular rates and accelerations with
noisy, quantized acceleration measurements.

Nomenclature
A = relative acceleration matrix
QaX i , QaYi , QaZi = components of acceleration of the i th

accelerometer in the computational frame
B = body reference frame
C = computational frame
G = sensitivity matrix
I = inertial reference frame
iB , jB , kB = unit vectors of the body reference frame
iC , jC , kC = unit vectors of the computationalplane
M = matrix contains angular velocities and angular

acceleration in the computational plane
p; q; r = components of the angular velocity vector of the

projectile in the B frame
Qp; Qq; Qr = components of estimated angular rate

in the computational plane
Op; Oq; Or = components of noisy estimated angular rate

in the computational plane
R = relative position matrix of sensors in the

computational plane
r’ ! ¯ = distance vector from ’ to ¯ in B frame
U = algorithm input acceleration components
Qx1; Qx2; Qy = geometric distance of the computational plane
Y = algorithm angular rate and angular

acceleration components
®B=I = angular acceleration of the body reference frame

with respect to the inertial reference frame
Q®x ; Q®y ; Q®z = components of estimated angular acceleration in

the computational plane
’, ¯ , Â = sensor points on the body
!B=I = angular velocity of the body reference frame

with respect to the I frame

Introduction

SMALL and rugged microelectromechanical sensors (MEMS)
offer the potential to implement active � ight control systems
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onboard medium- and even small-caliber projectiles. A wide va-
riety of sensor technologies are being explored, such as linear ac-
celerometers,magneticroll sensors,tuningforkgyroscopes,magne-
tohydrodynamic angular rate sensors, and diaphragm strain gauge
surface pressure sensors, to name a few.1¡3 Several studies have
been conducted regarding potential performance improvements in
large-,medium-, and small-caliberprojectilesthat utilize some form
of an active � ight control system.4¡6 The potential performance en-
hancements are indeed impressive. However, for practical design
implementation,the sensors must be small and highly cost compet-
itive so that the sensor suite does not dominate the cost of the entire
projectile,which is of course a one-time use item. Although MEMS
technology is rapidly changing with innovative sensor con� gura-
tions regularly entering the market, currently linear accelerometers
are by far the least expensive and most developed devices.

Rigid-body kinematics provides a link between linear acceler-
ation, angular velocity, and angular acceleration. Because angular
velocity and angular acceleration are body properties and linear
acceleration is a point property,7 the linear acceleration at several
points on a rigid body can be used to compute the angular velocity
and acceleration of a body. Several algorithms have been devel-
oped for different applications. For example, Padgaonkar et al.8

used nine single-axis acceleration measurements at four different
noncoplanar points to compute angular velocity and acceleration
components.Genin et al.9 showed that the minimum number of ac-
celeration measurements needed to estimate both angular velocity
and acceleration is nine. Harkins and Brown10 explored the use of
four single-axis linear accelerometersaligned with the body axis of
a projectile to compute angular velocity and acceleration.When ap-
plied to a direct� re atmosphericrocket,digitalaccelerometeroutput
at 16-B resolutionwas necessary.Clusters of three, triaxial-axisac-
celerometers have also been proposed to compute the angular rates
and accelerations.A method developedby Angeles11 computes the
angular velocity and acceleration of a body by exploiting the prop-
erties of skew symmetric matrices. The linear acceleration data are
numerically integrated to obtain necessary linear velocity informa-
tion. Another method due to Nusholtz12 is based on spherical ge-
ometric analysis. When the properties of acceleration components
on a sphere are used, the method determines both angular veloc-
ity and angular accelerationwith three triaxial accelerometers.This
technique also relies on numerical integration, as well as numerical
differentiation.

The work reported here develops a general technique to estimate
body frame components of angular velocity and acceleration of a
rigid body using triaxial acceleration measurements that are free
from numerical integration or differentiation. An error analysis is
conducted to establish how accelerationmeasurementserrors prop-
agate into angular rate estimation errors. When a realistic direct � re

73



74 COSTELLO AND JITPRAPHAI

Fig. 1 General sensor con� guration.

Fig. 2 Computationalplane geometry.

atmospheric rocket trajectory is used, angular rates and accelera-
tions are estimated with clusters of accelerometers placed on the
skin of the rocket. Practical issues such as the required number of
sensors, sensor arrangement, data fusion, and quantization errors
are addressed.

Three Triaxial Accelerometers Clusters
The minimumnumberof sensorsto measureboth angularrate and

angularaccelerationcomponentsof a bodyusing linear acceleration
measurement is three.9 Consider Fig. 1, which shows three triaxial
accelerometers mounted arbitrarily on a rigid body along with the
different reference frames used in the analysis. The accelerometers
are located at points ’, ¯, and Â . The computationalplane is de� ned
as the plane formed by the sensor location points ’, ¯ , and Â . The
computational frame C is aligned with the computationalplane but
is collocated with the body reference frame B. Figure 2 details the
geometry of the computationalplane. It is assumed that the position
and orientation of each sensor are known in the body frame. When
these data are used, the unit vectors of the computational frame are
determined.The unit vector iC is parallel to the distancevector from
’ to ¯ , whereas the kC axis is perpendicular to the computational
planeand the unit vector jC completes the right-handedtriad.When
these de� nitions are used, an orthogonal transformation from the
body frame to the computational frame can be formed. The dif-
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ference in the linear acceleration of two points � xed on a rotating
body B with respect to an inertial reference frame I is given by

a¯=I ¡ a’=I D ®B=I £ r’ ! ¯ C !B=I £ .!B=I £ r’ ! ¯ / (1)

where ®B=I is the angular acceleration of B with respect to I , !B=I

is the angular velocity of B with respect to I , and r’ ! ¯ is the
distance vector from ’ to ¯ . Measure numbers with a tilde refer
to the computation frame, whereas those without refer to the body
frame. Applicationof Eq. (1) to bodypoint combinations’–¯ , ’–Â ,
and ¯–Â generates three sets of equations that are concatenatedinto
matrix form as
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Unfortunately, the distance matrix R is singular because any two
of the three distance vectors can be either added or subtracted to
obtain the third vector. For three noncollinear points, the distance
matrix has rank two. If the kinematic equations are written in the
computationalframeas shownearlier, thegeneralizedinverseallows
the � rst two columns of M to be reconstructed:
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The property given in Eq. (6) is not unique to the computational
frame as already de� ned. Any computational frame with one axis
perpendicular to the plane formed by the three sensor points will
permit two of the columns of M to be reconstructed.Multiplication
of Eq. (2) by R¡1 yields
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Using sensor position and acceleration measurement data, Eq. (7)
provides a method to compute the � rst two columns of the matrix
of unknowns, M , and as such furnishes six equations. Whereas M
consistsof nineelements,thematrix isgeneratedwith sixparameters
that appear in a nonlinear manner. The solution of these equations
is given by
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Q®Z D 1
2 .M2;1 ¡ M1;2/ (13)

In Eqs. (8–12), s Qp , s Qq , and sQr are the algebraic signs of Qp, Qq , and
Qr , respectively.The kinematic formulas cannot isolate the algebraic
signs of Qp, Qq , and Qr . To see this, note that if Qp, Qq, and Qr is a solution
to Eq. (2), then ¡ Qp, ¡Qq, and ¡Qr must also be a solution because
the M matrix is identical in both cases. Thus, two valid solutions to
this inverse problem exist.

More Than Three Triaxial Accelerometers Clusters
When more than three noncoplanar triaxial accelerometers are

employed, there is no need to transform the geometric and mea-
surement data to a computationalplane because the distance matrix
R is full rank. The distance matrix will be full rank provided at least
four of the points in the sensor cluster are noncoplanar.In this case,
all three columns of M can be completely reconstructeddirectly in
the body frame. If n body point combinations are generated, then
application of Eq. (1) generates n columns of data in the accelera-
tion matrix A and the distance matrix R. The solution formulas are
provided as
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As with the three-triaxial-clustercase, two valid solutions are pos-
sible dependingon the algebraic sign of p, q , and r . Notice that the
angular accelerationcomponents can be directly computed without
knowledgeof the algebraicsign of the angularvelocity components,
whereas in the three-point case, ®X and ®Y required knowledge of
the algebraic sign.

Algebraic Sign Determination
Success of both estimation algorithms discussed fundamentally

relies on knowledge of the algebraic sign of the angular velocity
components. Regrettably, Eq. (2) has no means to distinguish be-
tween the two possible solutions. Additional auxiliary information
must be introduced for this speci� c purpose.For sensor clusters us-
ing more than three noncoplanarpoints, knowledgeof the algebraic
sign of one of the angularvelocity components is suf� cient to estab-
lish the remaining algebraic signs. In a practical setting, this is often
the case because gun ri� ing or projectile � n cant tend to produce
roll rate time histories that are positiveor negativeover the duration
of � ight. With a fully reconstructed M matrix, products of angular
velocity components can be readily formed:

qr D 1
2 .M3;2 C M2;3/ (20)
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pq D 1
2 .M2;1 C M1;2/ (22)

For example, if the roll rate algebraic sign is known to be positive at
some time instant from an externalsensorand the sum of M12 C M21

is negative, then sign(q ) must be negative. This logic can be used
to establish the algebraic sign of the yaw rate as well. When the

minimum set of three triaxialaccelerometersis employedin a sensor
cluster, if sign( Qp) is known, then sign( Qq ) can be inferred and visa
versa. However, sign(Qr ) must be established independently.

If the algebraic sign of select components of angular velocity are
not known then previous recent states of the body can be used to
estimate the algebraic sign at a particular time instant. Denote x p ,
xq , and xr as sequences of recent previous values of p, q, and r ,
respectively. Furthermore, denote ±xp , ±xq , and ±xr as the maxi-
mum expected change of p, q, and r during a given time interval.
If sign[max.x p/ C ±x p] D sign[.min.xp/ ¡ ±xp ], then the algebraic
sign of xp is assumed to be the algebraic sign of p. Similar argu-
ments apply to q and r . This technique must be initialized with the
correct algebraic sign and can fail to predict an algebraic sign esti-
mate if all components of angular velocity are near zero. Once this
condition is encountered, the algebraic signs must be reset by an
external means. Other techniques based on numerically integrating
the angular accelerationestimates can also be utilized. These meth-
ods have the disadvantageof occasionallyincorrectlypredictingthe
algebraicsign when crossing throughzero and subsequentlylock-in
on the incorrect algebraic sign.

Measurement Error Sensitivity Analysis
To evaluatehow accelerationmeasurement errorsmap into errors

in angular velocity and angular acceleration, error propagation for
a sensor cluster consisting of three triaxial acceleration sensors is
considered. Noisy acceleration signals induce two distinct types of
errors, namely, errors in the magnitude of the angular rate and ac-
celeration components, as well as errors in the algebraic sign of the
angular rates. Here, we only considermagnitudeerrors. Each accel-
eration measurement contains noise components. The substitution
of the noisy sensor data into the accelerationmatrix in Eq. (3) yields
an additionalerror matrix AN that degrades reconstructionof the M
matrix as
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The term AN R¡1 is a functionof sensorclustergeometryand sensor
noise and is expressed as
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Equation (23) separates the correct estimation of the M matrix
from the estimation errors due to sensor noise. The estimated M
matrix that includes the effect of sensor noise is

OM D

2

64
OM1;1

OM1;2 0
OM2;1

OM2;2 0
OM3;1

OM3;2 0

3

75 D

2

4
¡ Qq2 ¡ Qr 2 ¡Q®Z C Qp Qq 0

Q®Z C Qp Qq ¡ Qp2 ¡ Qr 2 0

¡Q®Y C Qp Qr Q®X C Qq Qr 0

3

5

C

2

4
N1;1 N1;2 0

N2;1 N2;2 0

N3;1 N3;2 0

3

5 (25)

To illustrate the complex manner in which sensor errors affect
angular rate estimates, � rst consider the simpli� ed case where one
sensor is located along the JB axis and the other two sensors are
along the IB axis, one at the nose and one near the tail. In this
case, the body axes and computational axes are aligned. To further
simplify matters, consider the case where Pp D Pq D Pr D 0. By the use
of Eq. (25), the estimated angular velocity components in terms of
sensor error and the actual angular velocity components is given by
Eqs. (26–28):
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The product terms that containangular rate and sensorerror com-
ponents indicate the interaction between the true angular velocity
and the estimation errors. Notice that estimation of pitch rate Oq is
not dependenton the actual yaw rate, but the yaw rate estimate does
depend on the actual pitch rate. The sensitivity of angular velocity
component estimation to acceleration measurement error is a com-
plex functionof sensorgeometry through the various Ni; j terms and
the actual angular velocity components.

Now consider a more general setting, where the estimation algo-
rithm given by Eqs. (8–13) is expressed in a compact form:

Y D F.U/ (30)

where the input to the algorithmis the accelerationmeasurementsU
and the output of the algorithm is the angular velocity and angular
acceleration components Y:
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We seek to understandhow perturbationsin the vector U, represent-
ing sensorerror,map into perturbationsin the vectorY, representing
estimation error. Equation (32) can be approximatedlocally using a
Taylor series retainingonly the linear term, to providea relationship
between measurement and estimation errors:

±Y D G ¢ ±U (33)

The matrix G represents the sensitivityof computed angular veloc-
ity and acceleration components to errors in the input acceleration
data and can be numerically computed using � nite differences or
analyticallyevaluated about a given point. The sensitivitymatrix G
is a nonlinear function of geometric parameters and instantaneous
angular rates and acceleration. If each error source is independent
and all noise sources have the same rms value, the rms error of the
i th output is given by

rmsYi
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vuut
mX

j D 1

G2
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Equation (34) is de� ned as the rms ratio. The rms values for
accelerometer error are known from manufacturer speci� cations,
whereas control system designers prescribe levels of � delity in esti-
mated angular velocity and accelerationcomponents.To investigate
accelerationmeasurement error propagation through the estimation
algorithm, consider a typical direct � re atmospheric rocket that is
150 cm in length and has a diameter of 3.5 cm. Acceleration data
are recorded at three points on the rocket. The projectile body axis
is de� ned in the conventionalmanner such that the iB axis emanates
from the mass center of the projectile and points toward the nose.
The jB and kB axes form an orthogonal set.

The � rst geometric con� guration considered,denoted the L con-
� guration,comprisesa sensormountedalongeachbodyaxis.Differ-
ent sensor con� gurationsare obtained by rotating the sensor cluster
about the axis of symmetry of the projectile by the sensor con-
stellation angle µ . In the results to follow, the angular acceleration
components are set to zero. Figures 3–8 show the rms ratio for esti-
mated roll, pitch, and yaw rate to accelerationmeasurement error as
a function of the actual roll rate and sensor constellation angle. In
Figs. 3–8, the sensoralong the axis of symmetry, iB , is located85 cm
from the projectile mass center toward the nose, whereas the sen-
sors along the jB and kB axes are located 3.5 cm from the center of
rotation.Figures3–5 show the rms ratio computedfor low pitch and

yaw rates. When the projectile is rolling slowly, the error sensitivity
is greatestbecausethe accelerationnoise is a relatively large portion

of the total acceleration measurement signal. Figures 6–8 are sim-
ilar to Figs. 3–5 except the pitch and yaw rates are slightly higher
(1 rad/s). The largest error sensitivity occurs when the nominal roll
rate is zero. For most constellation angles, the error sensitivity de-
creases with increasing roll rates. However, Figs. 6–8 also show a
nonlinearridgelineemanatingfrom p D 0. The ridgelineof highrms
ratio rotates for different nominal pitch and yaw rate values. This
error ridgeline is particularly troublesome because projectile pitch
and yaw rates are oscillatoryin nature.Virtually any combinationof
pitch and yaw rates is possible at a given instant in time, including
pitch and yaw rate combinations in the high error sensitivity ridge-
line. Figures9–11 plot the rms ratio of the estimated yaw rate for the
L con� guration as a functionof the nominal pitch and yaw rates for
three different constellationangles with the nominal roll rate equal
to 2 rad/s. The rms ratio ridge also rotates with the constellation
angle.

Figures 12–14 show the same data as Figs. 6–8 except for the
O con� guration. The O con� guration employs two accelerometers
mounted on opposite ends of the kB axis and one accelerometer on
the jB axis. For Figs. 12–14 the pitch rate is zero and the yaw rate
is 1.41 rad/s. Error sensitivity of roll rate is large for low roll rate
and rapidly decays as roll rate is increased.When the pitch and yaw
rates increased,error sensitivityof q and r is � at for all constellation

Fig. 3 Estimated projectile roll rate rms ratio of for L con� guration
vs nominal roll rate and sensor constellation angle: q = 0:0001 rad/s,
r = 0:0001 rad/s.

Fig. 4 Estimated projectile pitch rate rms ratio for L con� guration
vs nominal roll rate and sensor constellation angle: q = 0:0001 rad/s,
r = 0:0001 rad/s.



COSTELLO AND JITPRAPHAI 77

Fig. 5 Estimated projectile yaw rate rms ratio for L con� guration
vs nominal roll rate and sensor constellation angle: q = 0:0001 rad/s,
r = 0:0001 rad/s.

Fig. 6 Estimated projectile roll rate rms ratio for L con� guration vs
nominal roll rate and sensor constellation angle: q = 1 rad/s, r = 1 rad/s.

Fig. 7 Estimated projectile pitch rate rms ratio for L con� guration vs
nominal roll rate and sensor constellation angle: q = 1 rad/s, r = 1 rad/s.

angles and nominal roll rates. The level of this � at region is com-
paratively higher than the error sensitivity of the con� guration L.
Note that the estimation algorithm is based on data at a single time
instant so that poor angular velocity estimation at one instant does
not corrupt future angular velocity estimates.

Skin-Mounted Triaxial Acceleration
Measurement Sensor Fusion

The algorithms discussed can be employed to estimate angu-
lar rates and acceleration of a projectile with an array of sensors
mounted on the skin of the body. The sensor suite is composed of n
ringsof sensors,with each ring containingm sensors,where the sen-

Fig. 8 Estimated projectile yaw rate rms ratio for L con� guration vs
nominal roll rate and sensor constellation angle: q = 1 rad/s, r = 1 rad/s.

Fig. 9 Estimated yaw rate rms ratio for L con� guration vs nominal
pitch and yaw rate: µ = 0 deg.

Fig. 10 Estimated yaw rate rms ratio for L con� guration vs nominal
pitch and yaw rate: µ = 45 deg.

sors in a ringare equallyspacedazimuthally.A schematicis shownin
Fig. 15. With a large number of triaxial acceleration measurements
available, several different options are possible to fuse the sensor
data together. At one extreme, all acceleration measurements are
used to estimate the M matrix de� ned earlier, followed by compu-
tation of the angular velocity and acceleration components using
Eqs. (14–19). At the other extreme, l groups of three-point mea-
surements are used to calculate l differentpredictionsof the angular
velocity and acceleration components using Eqs. (8–13). Median
values of the l estimated parameters are used to determine the � nal
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Fig. 11 Estimated yaw rate rms ratio for L con� guration vs nominal
pitch and yaw rate: µ = 90 deg.

Fig. 12 Estimated roll rate rms ratio for O con� guration vs nominal
roll rate and sensor constellation angle: q = 0 rad/s, r = 1:414 rad/s.

Fig. 13 Estimated pitch rate rms ratio for the O con� guration vs nom-
inal roll rate and sensor constellation angle: q = 0 rad/s, r = 1:414 rad/s.

estimated value for a parameter. The l sensor clusters are randomly
selected except for the constraint that the distance matrix R is full
rank.

Figures 16–21 provide estimation results for a trajectory of a
generic direct � re rocket in atmospheric � ight. The rocket trajec-
tory shown in the results to follow has been generated from a six-
degrees-of-freedomprojectilesimulation.Normally distributedran-
dom noise, with a standarddeviationof 0.031 m/s2 , is added to each
accelerationmeasurement to replicateactualnoisy sensors.The sig-
nals are also quantized using 64 � oating point bytes to account for
analog to digital conversion.13 The algebraic sign of the roll rate is

Fig. 14 Estimated yaw rate rms ratio for the T con� guration vs roll
rate and sensor constellation angle: q = 0 rad/s, r = 1:414 rad/s.

Fig. 15 Acceleration measurement sensor con� guration.

Fig. 16 Actual and estimated roll rate vs time.

Fig. 17 Actual and estimated pitch rate vs time.
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Fig. 18 Actual and estimated yaw rate vs time.

Fig. 19 Actual and estimated roll acceleration vs time.

Fig. 20 Actual and estimated pitch acceleration vs time.

generally known for a direct � re rocket. Hence, the angular rates
are computed assuming the algebraic sign of roll rate is known.
The angular velocity and acceleration components are estimated
using a single cluster of 80 triaxial sensors. For this typical exam-
ple, roll rate and all angular accelerationcomponents are estimated
accurately over the entire trajectory in the presence of noise and
quantization. However, the pitch and yaw rate estimations are no-
tably less accurate and more sensitive to accelerationmeasurement

Fig. 21 Actual and estimated yaw acceleration vs time.

Fig. 22 Average error magnitude vs sensor con� guration.

Fig. 23 Average error magnitude vs sensor fusion technique.

error. In particular,when pitch and yaw rate is small, the estimation
errors are relatively large. Conversely,when the pitch and yaw rates
are largest, the estimation is reasonably accurate.

Figures 22–24 show the errors encountered in estimating pitch
rate for differentsensor con� gurations.For Figs. 22–24, the average
absolute value of the error between the actual and estimated pitch
rate over the entire trajectory is reported. Figure 22 shows the av-
erage pitch rate error as a function of the total number of sensors
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Fig. 24 Average error magnitude vs quantization level.

mounted on the projectile skin. As would be expected, as the num-
ber of sensors is increased, either from increasing the number of
sensor rings or increasing the number of sensors per ring, pitch rate
estimation steadily improves. Figure 23 presents the average pitch
rate error vs the number of sensor clusters used in the estimation
process. Note that the total number of sensors is held constant in
Fig. 23; only the manner in which the sensor data are processed is
changed. Figure 23 suggests that the best sensor fusion strategy is
one sensor cluster that contains all of the sensors. The minimum
error is found by utilizing all of the sensor data to compute the M
matrix most accurately.Thus, the estimation algorithm, as given by
Eqs. (14–19), tends to magnify errors. Figure 24 plots the average
pitch rate error vs the number of bytes used when converting the
acceleration measurement data to digital form. The average pitch
rate error is a strong function of acceleration measurement quanti-
zation. Furthermore, the error reduces sharply until 16 B and then
reduces at a lower rate as the number of bytes is further increased.
For direct � re rocket applications,accelerationquantization should
be performed at no less than 16 B.

Conclusions
The inverse problem of calculating the angular velocity and ac-

celeration of a rigid body using translational acceleration data at
three or more points on a body has been given. Two solutions ex-
ist for the angular velocity components, differing only in algebraic
sign. The error sensitivity of the algorithm described is a nonlinear
function of the angular velocity and acceleration components. For
the examplecon� gurationconsidered,error sensitivityof roll rate is
generallyhighest at low values of roll rate and rapidly decays as roll

rate is increased.For a body that nutates and precesses as it rolls, an
error ridge of large error sensitivity is present.The error ridge char-
acteristic can present a problem for the described algorithm when
employed on a rigid body where pitch and yaw rates oscillate. In
this case, an unfortunate combination of q and r on the ridge will
induce large errors. When acceleration is recorded on the skin of
an atmospheric rocket, the angular velocity and acceleration com-
ponents can be effectively estimated. The most effective method to
fuse the data is using one cluster that contains all of the sensors.
Care must be taken in analog to digital conversion of acceleration
measurement, and for direct � re rocket applications, at least 16 B
of resolution should be retained.
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